Bibliography concerning climatic changes given by Nickos Goulopoulos in 2009 ("Anthropos" 14, pages: 241-251)
[1] Muller,
R.A., and G.J. MacDonald, Ice Ages and Astronomical Causes, Springer Praxis,
Chichester, UK (2000).
[2]
Fr¨ohlich, C., Observations of irradiance variability, Space Sci. Rev. 94,
15–24 (2000).
[3]
Lockwood, M., R. Stamper and M.N.Wild, A doubling of the Sun’s coronal magnetic
field during the past 100 years, Nature 399, 437 (1999).
[4] Beer,
J., Long-term indirect indices of solar variability, Space Sci. Rev. 94, 53–66
(2000).
[5] Lean,
J.L., J. Beer and R. Bradley, Reconstruction of solar irradiance since 1610:
Implications for climatic change, Geophys. Res. Lett. 22, 3195–3198 (1995).
[6] Lean,
J.L., Y.-M. Wang and N.R. Sheeley, The effect of increasing solar activity on
the Sun’s total and open magnetic flux during multiple cycles: Implications for
solar forcing of climate, Geophys. Res. Lett. 29, 2224 (2002).
[7]
Foukal, P., G. North and T.Wigley, A stellar view on solar variations and
climate, Science 306, 68 (2004).
[8]
Foukal, P., C. Fr¨ohlich, H. Spruit and T.Wigley, Variations in solar luminosity
and their effect on Earth’s climate, Nature 443, 161–166 (2006).
[9]
Rudiman, W.F., Earth’s climate, past and future, W.H. Freeman, New York (2001).
[10]
Thompson, W.G., and S.L. Goldstein, Open-system coral ages reveal persistent
suborbital sea level cycles, Science 308, 401–404 (2005). 32
[11]
Mudelsee, M., The phase relations among atmospheric CO2 content, temperature
and global ice volume over the past 420 ka, Quat. Sci. Rev. 20, 583–589 (2001).
[12]
Haigh, J.D., The effects of solar variability on the Earth’s climate, Phil. Trans. R. Soc.A 361, 95 – 111 (2003).
[13]
Svensmark, H., and E. Friis-Christensen, Variation in cosmic ray flux and
global cloud coverage - a missing link in solar-climate relationships, J. Atm.
Sol. Terr. Phys. 59, 1225 (1997).
[14]
Marsh, N.D., and H. Svensmark, Low cloud properties influenced by cosmic rays,
Phys. Rev. Lett. 85, No. 23, 5004–5007 (2000).
[15]
Marsh, N.D., and H. Svensmark, Galactic cosmic ray and El Ni˜no-Southern
Oscillation trends in International Satellite Cloud Climatology Project D2
low-cloud properties, J. Geophys. Res. 108 D6, 4195 (2003).
[16]
Kernthaler, S.C., R. Toumi and J.D. Haigh, Some doubts concerning a link
between cosmic ray fluxes and global cloudiness, Geophys. Res. Lett. 26,
863–865 (1999).
[17]
Jorgensen, T.B., and A.W. Hansen, Comments on “Variation of cosmic ray flux and
global cloud coverage - a missing link in solar-climate relationships” by
Henrik Svensmark and Eigil Friis- Christensen, J. Atm. Sol. Terr. Phys. 62,
73–77 (2000).
[18]
Kristj´ansson, J.E., and J. Kristiansen, Is there a cosmic ray signal in
recent variations in global cloudiness and cloud radiative forcing?, J.
Geophys. Res. 105, 11851–11863 (2000).
[19]
Kristj´ansson, J.E., A. Staple and J. Kristiansen, A new look at possible
connections between solar activity, clouds and climate, Geophys. Res. Lett. 29, 2107–2110, doi: 10.1029/2002GL015646
(2002).
[20] Sun,
B., and R.S. Bradley, Solar influences on cosmic rays and cloud formation: A
reassessment, J. Geophys. Res. 107,
D14, doi:10.1029/2001JD000560 (2002).
[21]
Damon, P.E., and P. Laut, Pattern of strange errors plagues solar activity and
terrestrial climatic data, EOS Transactions 85, 370–374 (2004).
[22]
Usoskin, I.G., N.D. Marsh, G.A.Kovaltsov, K. Mursula and O.G. Gladysheva,
Latitudinal dependence of low cloud amount on cosmic ray induced ionisation,
Geophys. Res. Lett. 31, L16109 doi:
10.1029/2004GL019507 (2004).
[23]
Harrison, R.G., and D.B. Stephenson, Empirical evidence for a nonlinear effect
of galactic cosmic rays on clouds, Proc. Roy. Soc. A, doi:10.1098/rspa.2005.1628 (2006).
[24]
Vieira, L.E.A, and L.A. da Silva, Geomagnetic modulation of clouds effects in
the Southern Hemisphere Magnetic Anomaly through lower atmosphere cosmic ray
effects, Geophys. Res. Lett. 33, L14802,
doi:10.1029/2006GL026389 (2006).
[25]
Hartmann, D.L., Radiative effects of clouds on Earth’s climate, in
Aerosol-Cloud-Climate Interactions, International Geophysics Series 54, ed.
P.V. Hobbs, Academic Press Inc., San Diego, 151–173 (1993).
[26]
Carslaw, K.S., R.G. Harrison and J. Kirkby, Cosmic rays, clouds, and climate,
Science 298, 1732– 1737 (2002).
[27] Eddy,
J.A., The Maunder minimum, Science 192, 1189–1202 (1976).33
[28] Hoyt,
D.V., and K.H. Schatten, Group sunspot numbers: a new solar activity
reconstruction, Solar Phys. 179, No. 1, 189–219 (1998).
[29]
Moberg, A., D.M. Sonechkin, K. Holmgren, N.M. Datsenko and W. Karl´en,
Highly variable Northern Hemisphere temperatures reconstructed from low- and
high-resolution proxy data, Nature 433, 613–618 (2005).
[30]
Polissar, P.J., M.B. Abbott, A.P.Wolfe, M. Bezada, V. Rull, and R.S. Bradley,
Solar modulation of Little Ice Age climate in the tropical Andes, Proc. Nat. Acad. Sc. USA 103, 24, 89378942 (2006).
[31] Mann,
M.E., R.S. Bradley and M.K. Hughes, Global-scale temperature patterns and
climate forcing over the past six centuries, Nature 392, 779–787 (1998).
[32] Mann,
M.E., R.S. Bradley and M.K. Hughes, Northern Hemisphere temperatures during the
past millennium: inferences, uncertainties, and limitations, Geophys. Res.
Lett. 26, 759–762 (1999).
[33]
Pollack, H.N., and J.E. Smerdon, Borehole climate reconstructions: spatial
structure and hemispheric averages, J. Geophys. Res. 109, doi:10.1029/2003JD004163 (2004).
[34]
Dahl-Jensen, D., K. Mosegaard, N. Gundestrup, G.D. Clow, S.J. Johnsen, A.W.
Hansen and N. Balling, Past temperatures directly from the Greenland ice sheet,
Science 282, 268–271 (1998).
[35]
Stuiver, M., and P.D. Quay, Changes in atmospheric carbon-14 attributed to a
variable Sun, Science 207, 11–19 (1980).
[36]
Klein, J., J.C. Lerman, P.E. Damon and T. Linick, Radiocarbon concentrations in
the atmosphere: 8000 year record of variations in tree rings, Radiocarbon 22,
950–961 (1980).
[37]
Raisbeck, G.M., F.Yiou, J. Jouzel and J.-R. Petit, 10Be and 2H in polar ice
cores as a probe of the solar variability’s influence on climate, Phil. Trans.
Roy. Soc. Lond. A 300, 463–470 (1990).
[38]
Usoskin, I.G., K. Mursula, S.K. Solanki, M. Sch¨ussler and G.A.Kovaltsov, A
physical reconstruction of cosmic ray intensity since 1610, J. Geophys. Res.
107, doi:10.1029/2002JA009343 (2002).
[39]
McIntyre, S., and R. McKitrick, Hockey sticks, principal components and
spurious significance, Geophys. Res. Lett.,
doi: 2004GL012750 (2005).
[40]
Mangini, A., C. Sp¨otl, P.Verdes, Reconstruction of temperature in the Central
Alps during the past 2000 yr from a _18O stalagmite record, Earth and Planet.
Sci. Lett. 235, 741–751 (2005).
[41]
Verschuren, D., K. Laird and B. Cumming, Rainfall and drought in equatorial
East Africa during the past 1100 years, Nature 403, 410–414 (2000).
[42] Lund,
D.C., and W. Curry, Florida Current surface temperature and salinity
variability during the last millennium, Paleoceanography 21,
doi:10.1029/2005PA001218 (2006).
[43]
Newton, A., R. Thunell and L. Stott, Climate and hydrographic variability in
the
Indo-Pacific
Warm Pool during the last millennium Geophys. Res. Lett. 33, L19710,
doi:10.1029/2006GL027234 (2006).
[44]
Baker, P.A., G.O. Seltzer, S.L. Fritz, R.B. Dunbar, M.J. Grove, P.M. Tapia,
S.L. Cross, H.D. Rowe, and J.P. Broda, The history of South America tropical
precipitation for the past 25,000 years, Science 291, 640–643 (2001).
[45]
Brown, E.T., and T.C. Johnson, Coherence between tropical East African and
South
American records
of the Little Ice Age, Geochem. Geophys. Geosyst. 6, Q12005,
doi:10.1029/2005GC000959
(2005).
[46]
Hodell, D.A., M. Brenner, J.H. Curtis, R. Mendina-Gonzalez, E.I.C. Can, A.
Albornaz-Pat, and T.P. Guilderson, Climate change on the Yucatan Peninsula during
the Little Ice Age, Quat. Res. 63, 109–121 (2005).
[47]
Linsley, B.K., R.B. Dunbar, G.M.Wellington and D.A. Mucciarone, A coral-based
reconstruction of intertropical convergence zone variability over Central
America since 1707, J. Geophys. Res. 99, 9977–9994 (1994).
[48]
Wantanabe, T., A.Winter, and T. Oba, Seasonal changes in sea surface
temperature and salinity during the Little Ice Age in the Caribbean Sea deduced
from Mg/Ca and 18O/16O ratios, Mar. Geol. 173, 21–35 (2001).
[49] Haug,
G.H., K.A. Hughen, D.M. Sigman, L.C. Peterson, and U. Rohl, Southward migration
of the intertropical convergence zone through the Holocene, Science 293,
1304–1308 (2001).
[50]
Anderson, D.M., J.T. Overpeck and A.K. Gupta, Increase in the Asian southwest
monsoon during the past four centuries, Science 297, 596–599 (2002).
[51]
Treydte, K.S., A.H. Schleser, G. Helle, D.C. Frank, M.Winiger, G.H. Haug, and
J. Esper, The twentieth century was the wettest period in northern Pakistan
over the past millennium, Nature 440, 1179–1182 (2006).
[52] Wang,
L., M. Sarnthein, H. Erlenkeuser, P.M. Grootes, J.O. Grimalt, C. Pelejero and
G. Linck, Holocene variations in Asian Monsoon moisture: A bidecadal sediment
record from the South China Sea, Geophys. Res. Lett. 26, 2889–2892 (1999).
[53]
Sinha, A., et al., A 900-year (600 to 1500 A.D.) record of the Indian summer
monsoon
precipitation
from the core monsoon zone of India, Geophys. Res. Lett. 34, L16707,
doi:10.1029/2007GL030431 (2007).
[54]
Freidenreich, S.M., and V. Ramaswamy, Solar radiation absorption by carbon
dioxide, overlap with water, and a parameterization for General Circulation
Models, J. Geophys. Res. 98, 7255– 7264 (1993).
[55] Beer,
J., et al., Use of 10Be in polar ice to trace the 11-year cycle of solar
activity, Nature 347, 164–166 (1990).
[56] Bard,
E., G.M. Raisbeck, F.Yiou and J. Jouzel, Solar modulation of cosmogenic nuclide
production over the last millennium: comparison between 14C and 10Be records,
Earth and Planet. Sci. Lett. 150, 453, doi:10.1016/S0012-821X(97)00082-4
(1997).
[57]
Stozhkov, Y.I., N.S. Svirzhevsky and V.S. Makhmutov, Cosmic ray measurements in
the atmosphere, in Proc. of theWorkshop on Ion-Aerosol-Cloud Interactions, ed.
J. Kirkby, CERN, Geneva, CERN 2001-007, 41–62 (2001). http://cloud.web.cern.ch/cloud/iaci
workshop/proceedings.html
[58]
Babarykin, V.K., V.V. Bayarevich, Y.I. Stozhkov and T.N. Charakhchyan, Latitude
survey of cosmic ray intensity in the stratosphere, Geomagnetizm i Aeronomia 4
No.3, 458-463 (1964) (in Russian).
[59] Bond,
G.C., and R. Lotti, Iceberg discharges into the North Atlantic on millennial
time scales during the last glaciation, Science 267, 1005–1010 (1997).
[60] Bond,
G.C., W. Showers, M. Cheseby, R. Lotti, P. Almasi, P. deMenocal, P. Priore, H.
Cullen, I. Hajdas and G. Bonani, A pervasive millennial-scale cycle in North
Atlantic Holocene and glacialclimates, Science 278, 1257–1266 (1997).
[61] Bond,
G.C., B. Kromer, J. Beer, R. Muscheler, M.N. Evans, W. Showers, S. Hoffmann, R.
Lotti- Bond, I. Hajdas and G. Bonani, Persistent solar influence on North
Atlantic climate during the Holocene, Science 294, 2130–2136 (2001).
[62] Hu,
F.S., D. Kaufman, S.Yoneji, D. Nelson, A. Shemesh, Y. Huang, J. Tian, G.C.
Bond, B. Clegg and T. Brown, Cyclic variation and solar forcing of Holocene
climate in the Alaskan sub-Arctic, Science 301, 1890–1893 (2003).
[63]
Russell, J.M., and T.C. Johnson, Late Holocene climate change in North Atlantic
and equatorial Africa: millennial-scale ITCZ migration, Geophys. Res. Lett. 32, doi:10.1029/2005GL023295 (2005).
[64] Wang,
Y., et al., The Holocene Asian monsoon: links to solar changes and North
Atlantic climate, Science 308, 854–857 (2005).
[65] Neff,
U., et al., Strong coincidence between solar variability and the monsoon in
Oman between 9 and 6 ky ago, Nature 411, 290–293 (2001).
[66]
Field, C.V., G. Schmidt, D.Koch, and C. Salyk, Modeling production and
climate-related impacts on 10Be concentration in ice cores, J. Geophys. Res. 111, D15107, doi:10.1029/2005JD006410 (2006).
[67]
Christl, M., C. Strobl and A. Mangini, Beryllium-10 in deep-sea sediments: a
tracer for the Earth’s field intensity during the last 200,000 years, Quat. Sc.
Rev. 22, 725–739 (2003).
[68]
Christl, M., A. Mangini, S. Holzk¨amper and C. Sp¨otl, Evidence for a link
between the flux of galactic cosmic rays and Earth’s climate during the past
200,000 years, J. Atm. Sol. Terr. Phys. 66, 313–322 (2004).
[69]
Guyodo, Y., and J.-P. Valet, Global changes in intensity of the Earth’s
magnetic field during the past 800 kyr, Nature 399, 249–252 (1999).
[70] Beck,
J.W., et al., Extremely large variations of atmospheric 14C concentration
during the last glacial period, Science 292, 2453–2458 (2001).
[71]
Muscheler, R., et al., Changes in the carbon cycle during the last deglaciation
as indicated by the comparison of 10Be and 14C records, Earth and Planet. Sci.
Lett. 219, 325–340 (2004).
[72]
Sp¨otl, C., A. Mangini, N. Frank, R.,Eichst¨adter and S.J. Burns, Start of the
last interglacial period at 135 ka: Evidence from a high Alpine speleothem, Geology
30, No. 9, 815–818 (2002).
[73]
Henderson, G.M., and N.C. Slowey, Evidence from U/Th dating against Northern
Hemisphere forcing of the penultimate deglaciation, Nature 404, 61–66 (2000).
[74]
Gallup, C.D., H. Cheng, F.W. Taylor and R.L. Edwards, Direct determination of
the timing of sea level change during Termination II, Science 295, 310–313
(2002).
[75]
Winograd, I.J., T.B. Coplen, J.M. Landwehr, A.C. Riggs, K.R. Ludwig, B.J.
Szabo, P.T.Kolesar, and K.M. Revesz, Continuous 500,000-year climate record
from vein calcite in Devil’s Hole, Nevada, Science 258, 255–260 (1992).
[76]
Visser, K., R. Thunell and L. Stott, Magnitude and timing of temperature change
in the Indo- Pacific warm pool during deglaciation, Nature 421, 152–155 (2003).
[77]
Kirkby, J., A. Mangini and R.A. Muller, The glacial cycles and cosmic rays,
CERN-PH-EP/2004- 027 (2004). http://cdsweb.cern.ch/record/749918.
[78]
Malkus, W.V.R., Precession of the Earth as a cause of geomagnetism, Science
160, 259–264 (1968).
[79]
Channell, J.E.T., D.A. Hodell, J. McManus and B. Lehman, Orbital modulation of
the Earth’s magnetic field intensity, Nature 394, 464–468 (1998).
[80]
Yamazaki, T., and H. Oda, Orbital influence on Earth’s magnetic field:
100,000-year periodicity in inclination, Science 295, 2435–2438 (2002).
[81]
Wagner, G., J. Masarik, J. Beer, S. Baumgartner, D. Imboden, P.W.Kubik, H.-A.
Synal and M. Suter, Reconstruction of the geomagnetic field between 20 and 60
ky BP from cosmogenic radionuclides in the GRIP ice core, Nuc. Inst. Meth. Phys.
Res. B172, 597–604 (2000).
[82]
Guillou, H., B.S. Singer, C. Laj, C. Kissel, S. Scaillet and B.R. Jicha, On the
age of the Laschamp geomagnetic excursion, Earth and Planet. Sci. Lett. 227,
331–343 (2004).
[83]
Wagner, G., D M. Livingstone, J. Masarik, R. Muscheler and J. Beer, Some
results relevant to the discussion of a possible link between cosmic rays and
the Earth’s climate, J. Geophys. Res. 106, D4, 3381–3387 (2001).
[84] Laj,
C., C. Kissel, A. Mazaud, J.E.T. Channell and J. Beer, North Atlantic palaeointensity
stack since 75 ka (NAPIS-75) and the duration of the Laschamp event, Philos. Trans. R. Soc. A 358, 1009–1025 (2000).
[85] Wang,
Y.J., H. Cheng, R.L. Edwards, Z.S. An, J.Y.Wu, C.-C. Shen, J.A. Doral, A
high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave,
China, Science 294, 2345–2348 (2001).
[86] Wang,
X., A.S. Auler, R.L. Edwards, H. Cheng, P.S. Cristalli, P.L. Smart, D.A.
Richards and C.- C. Shen, Wet periods in northeastern Brazil over the past 210
ky linked to distant climate anomalies, Nature 432, 740–743 (2004).
[87]
Piotrowski, A.M., S.L. Goldstein, S.R. Hemming and R.G. Fairbanks, Temporal
relationships of carbon cycling and ocean circulation at glacial boundaries,
Science 307, 1933–1938 (2005).
[88]
Veizer, J., Y. Godderis and L.M. Franc¸ois, Evidence for decoupling of
atmospheric CO2 and global climate during the Phanerozoic Eon, Nature 408,
698–701 (2000).
[89]
Shaviv, N.J., Cosmic ray diffusion from the galactic spiral arms, iron
meteorites, and a possible climatic connection, Phys. Rev. Lett. 89, 051102
(2002).
[90]
Shaviv, N.J., and J.Veizer, Celestial driver of Phanerozoic climate?, GSA
Today, Geological Society of America, July 2003, 4–10 (2003).
[91]
Rahmstorf, S. et al., Cosmic rays, carbon dioxide, and climate, Eos 85, no. 4,
38–40 (2004).
[92]
Royer, D.L., et al., CO2 as a primary driver of Phanerozoic climate, GSA Today
14, no. 3, 4–10 (2004).
[93]
Wallmann, K., Impact of atmospheric CO2 and galactic cosmic radiation on
Phanerozoic climate change and the marine _18O record, Geochemistry Geophysics
Geosystems 5, doi:10.1029/2003GC000683 (2004).
[94] Gies,
D.R., and J.W. Helsel, Ice age epochs and Sun’s path through the galaxy,
Astrophys. J. 626, 844-848 (2005).
[95]
Svensmark, H., Imprint of galactic dynamics on Earth’s climate, Astron. Nachr.
327, No. 9, 866– 870 (2006).
[96]
Frisch, P., The galactic environment of the Sun, American Scientist 88, No. 1,
52, doi:
10.1511/2000.1.52
(2000).
[97]
Pavlov, A.A., O.B. Toon, A.K. Pavlov, J. Bally and D. Pollard, Passing through
a giant molecular cloud: “snowball” glaciations produced by interstellar dust,
Geophys. Res. Lett. 32, L03705,
doi:10.1029/2004GL021890 (2005).
[98]
Florinski, V., and G.P. Zank, Galactic cosmic ray response to heliospheric
environment changes and implications for cosmogenic isotope records, Proc. 29th
International Cosmic Ray Conference, Pune, India, 2, 263–266 (2005).
[99]
Rohde, R.A., and R.A. Muller, Cycles in fossil diversity, Nature 434, 208–210
(2005).
[100]
Svensmark, H., Cosmic rays and the biosphere over 4 billion years, Astron.
Nachr. 327, No. 9, 871–875 (2006).
[101]
Fields, B.D., and J. Ellis, On deep-ocean 60Fe as a fossil of near-earth
supernovae, New Astronomy 4, 419–430 (1999).
[102]
Knie, K., G.Korschinek, T. Faestermann, E.A. Dorfi, G. Rugel and A.Wallner,
60Fe anomaly in a deep-sea manganese crust and implications for a nearby
supernova source, Phys. Rev. Lett. 93, 171103 (2004).
[103]
Ermakov, V.I., G.A. Bazilevskaya, P.E. Pokrevsky and Y.I. Stozhkov, Ion balance
equation in the atmosphere, J. Geophys. Res. 102, 23413 (1997).
[104]
Kulmala, M., H.Vehkamaki, T. Petajda, M. Dal Maso, A. Lauri, V.M.Kerminen, W.
Birmili and P.H. McMurry, Formation and growth rates of ultrafine atmospheric
particles: a review of observations, J. Atm. Sci. 35, 143–176 (2004).
[105] Yu,
F.Q., and R.P. Turco, Ultrafine aerosol formation via ion-mediated nucleation,
Geophys. Res. Lett. 27, 883–886 (2000).
[106] Yu,
F., and R.P. Turco, From molecular clusters to nanoparticles: The role of
ambient ionisation in tropospheric aerosol formation, J. Geophys. Res. 106,
4797–4814 (2001).
[107]
Laakso, L., J.M.M¨akel¨a, L. Pirjola and M.Kulmala, Model studies on
ion-induced nucleation in the atmosphere, J. Geophys. Res. D20, 10.1029/2002JD002140 (2002).
[108] Laakso,
L., M.Kulmala and K.E.J. Lehtinen, Effect of condensation rate enhancement
factor on 3-nm (diameter) particle formation in binary ion-induced and
homogeneous nucleation, J. Geophys. Res. 108,
art.no. 4574 (2003).
[109]
Kulmala, M., et al., Toward direct measurement of atmospheric nucleation,
Science 318, 89–92 (2007).
[110] Dal
Maso, M., M.Kulmala, K.E.J. Lehtinen, J.M. Makela, P. Aalto and C.D. O’Dowd,
Condensation and coagulation sinks and formation of nucleation mode particles
in coastal and boreal forest boundary layers, J. Geophys. Res.-Atmos., 107,
art.no.8097 (2002).
[111]
Vohra, K.G., M.C. Subba Ramu and K.N.Vasudevan, Role of natural ionisation in
the formation of condensation nuclei in the atmospheric air, in Planetary
Electrodynamics, eds. S.C. Coroniti and J. Hughes, Gordon and Breach Science
Publishers (1969).
[112]
Vohra, K.G., M.C. Subba Ramu and T.S. Muraleedharan, An experimental study of
the role of radon and its daughter products in the conversion of sulphur
dioxide into aerosol particles in the atmosphere, Atmospheric Environment 18,
1653 (1984).
[113]
Svensmark, H., J.O.P. Pedersen, N.D. Marsh, M.B. Enghoff and U.I. Uggerhoj,
Experimental evidence for the role of ions in particle nucleation under
atmospheric conditions, Proc. Roy. Soc. A,
doi:10.1098/rspa.2006.1773 (2006).
[114]
Eichkorn, S., S.Wilhelm, H. Aufmhoff, K.H.Wohlfrom, and F. Arnold, Cosmic
ray-induced aerosol formation: First observational evidence from aircraft-based
ion mass spectrometer measurements in the upper troposphere, Geophys. Res.
Lett. 29, 43 (2002).
[115] Lee,
S.H., J.M. Reeves, J.C.Wilson, D.E. Hunton, A.A.Viggiano, T.M. Miller, J.O.
Ballenthin and L.R. Lait, Particle formation by ion nucleation in the upper
troposphere and lower stratosphere, Science, 301, 1886–1889 (2003).
[116]
Laakso, L., T. Anttila, K.E.J. Lehtinen, P.P. Aalto, M.Kulmala, U. Horrak, J.
Paatero, M. Hanke and F. Arnold, Kinetic nucleation and ions in boreal forest
particle formation events, Atmos. Chem. Phys., 4, 2353–2366 (2004).
[117] Froyd,
K.D., and E.R. Lovejoy, Experimental thermodynamics of cluster ions composed of
H2SO4 and H2O. 1. Positive ions, J. Phys. Chem.
A, 107, 9800–9811 (2003).
[118]
Froyd, K.D., and E.R. Lovejoy, Experimental thermodynamics of cluster ions
composed of H2SO4 and H2O. 2. Measurements and ab initio structures of negative
ions, J. Phys. Chem. A, 107, 9812– 9824 (2003).
[119]
Lovejoy, E.R., J. Curtius and K.D. Froyd, Atmospheric ion-induced nucleation of
sulphuric acid and water, J. Geophys. Res.
109, D08204, doi:10.1029/2003JD004460 (2004).
[120]
Tinsley, B.A., Influence of solar wind on the global electric circuit, and
inferred effects on cloud microphysics, temperature, and dynamics in the
troposphere, Space Sci. Rev., 94, 231–258 (2000).
[121]
Harrison, R.G., and K.S. Carslaw, Ion-aerosol-cloud processes in the lower
atmosphere,
Rev.
Geophys., 41, art. no.-1012 (2003).
[122]
Kraakevik, J.H., Measurements of current density in the fair weather
atmosphere, J. Geophys. Res. 66, 3735–3748 (1961).
[123]
Rycroft, M.J., S. Israelsson, and C. Price, The global atmospheric electric
circuit, solar activity and climate change, J. Atm. Sol. Terr. Phys. 62,
1563–1576 (2000).
[124]
Markson, R., Modulation of the Earth’s electric-field by cosmic-radiation,
Nature, 291, 304–308 (1981).
[125]
Harrison, R.G., Long-range correlations in measurements of the global
atmospheric electric circuit, J. Atm. Sol. Terr. Phys. 66, 1127–1133 (2004).
[126]
Tinsley, B.A., R.P. Rohrbaugh, M. Hei and K.V. Beard, Effects of image charges
on the scavenging of aerosol particles by cloud droplets and on droplet
charging and possible ice nucleation processes, Atmos. Res. 57, 2118–2134
(2000).
[127]
Sastry, S., Ins and outs of ice nucleation, Nature 438, 746–747 (2005).
[128]
Barlow, A.K., and J. Latham, A laboratory study of the scavenging of sub-micron
aerosol by charged raindrops, Quart. J. R.
Met. Soc. 109, 763–770 (1983).
[129]
Tinsley, B.A., L. Zhou and A. Plemmons, Changes in scavenging of particles by
droplets due to weak electrification in clouds. Atmos. Res. 79, 266–295 (2006).
[130]
Wilson, C.T.R., Expansion apparatus, Proc. Roy. Soc. London A 87, 277 (1912).
[131]
Dickinson, R.E., Solar variability and the lower atmosphere, Bull. Amer.
Meteor. Soc. 56, 1240 (1975).
[132] Ney,
E.P., Cosmic radiation and the weather, Nature 183, 451–452 (1959).
[133]
Pudovkin, M.I. and S.V.Veretenenko, Effects of the galactic cosmic ray
variations on the solar radiation input in the lower atmosphere, J. Atm. Sol.
Terr. Phys. 59, 14, 1739-1746 (1997).
[134]
Rossow, W.B. , A.W.Walker, D.E. Beuschel, and M.D. Roiter, International
Satellite Cloud Climatology Project (ISCCP): documentation of new cloud
datasets, WMO/TD 737, World Meteorological Organization, Geneva (1996).
http://isccp.giss.nasa.gov/
[135]
Laut, P., Solar activity and terrestrial climate: an analysis of some purported
correlations, J. Atm. Sol. Terr. Phys. 65, 801–812 (2003).
[136]
Palle, E., C.J. Butler and K. O’Brien, The possible connection between
ionization in the atmosphere by cosmic rays and low level clouds, J. Atm. Sol.
Terr. Phys. 66, 1779-1790 (2004).
[137]
Voiculescu, M., I.G. Usoskin, and K. Mursula, Different response of clouds at
the solar input, Geophys. Res. Lett. 33, L21802 (2006).
[138]
Voiculescu, M., I.G. Usoskin, and K. Mursula, Effect of ENSO and volcanic
events on the Suncloud link, Adv. Sp. Res. 40, 1140–1145 (2007).
[139]
Todd, M.C., and D.R. Kniveton, Changes in cloud cover associated with Forbush
decreases of galactic cosmic rays, J. Geophys. Res. 106, No. D23, 32031–32041
(2001).
[140]
Todd, M.C., and D.R. Kniveton, Short-term variability in satellite-derived
cloud cover and galactic cosmic rays: an update, J. Atm. Sol. Terr. Phys. 66,
1205-1211 (2004).
[141]
Tinsley, B.A., and F.Yu, Atmospheric ionization and clouds as links between
solar activity and climate, in Solar variability and its effects on climate,
eds. J. Pap and P. Fox, Geophysical Monograph 141, AGU Press, Washington, DC,
321–339, (2004).
[142]
Veretenenko, S., and P. Thejll, Effects of energetic solar proton events on the
cyclone development in the North Atlantic, J. Atm. Sol. Terr. Phys. 66, 393–405
(2004).
[143]
Troshichev, O., L. Egorova, A. Janzhura and V.Vovk, Influence of the disturbed
solar wind on atmospheric processes in Antarctica and El-Ni˜no Southern Oscillation
(ENSO), Mem. S. A. It. 76, 890–898 (2005).
[144]
Landscheidt, T., Solar forcing of El Ni˜no and La Ni˜na, Proc. The
Solar Cycle and Terrestrial Climate, Santa Cruz de Tenerife, Tenerife, Spain,
ESA SP-463, (2000).
[145]
Kniveton, D.R., and M.C. Todd, On the relationship of cosmic ray flux and
precipitation, Geophys. Res. Lett. 28, No. 8, 1527–1530 (2001).
[146]
Bretherton, C.S., et al., The EPIC 2001 stratocumulus study, Bull. Amer.
Meteor. Soc. 85, No.7, 967–977 (2004).
[147]
Wentz, F.J., L. Ricciardulli, K. Hilburn and C. Mears, How much more rain will
global warming bring?, Science 317, 233–235 (2007).
[148]
Kaufman, Y.J., I.Koren, L.A. Remer, D. Rosenfeld and Y. Rudich, The effect of
smoke, dust, and pollution aerosol on shallow cloud development over the
Atlantic Ocean, Proc. Nat. Acad. Sc. USA 102, No. 32, 11207–11212 (2005).
[149]
Koren, I., Y.J. Kaufman, D. Rosenfeld, L.A. Remer, and Y. Rudich, Aerosol
invigoration and restructuring of Atlantic convective clouds, Geophys. Res. Lett. 32, L14828,
doi:10.1029/2005GL023187, 11207–11212 (2005).
[150]
Salomonson, V.V., W.L. Barnes, P.W. Maymon, H.E. Montgomery, and H. Ostrow,
MODIS: Advanced facility instrument for studies of the Earth as a system, IEEE
Trans. Geosci. Remote Sens. 27, 145–153 (1989).
[151]
Twomey, S., The influence of pollution on the shortwave albedo of clouds, J.
Atm. Sci. 34, No. 7, 1149–1154 (1977).
[152]
Rosenfeld, D., private communication (2006).
[153]
Wood, R., D.L. Hartmann, Spatial variability of liquid water path in marine low
cloud: the importance of mesoscale cellular convection, J. Clim. 19. No. 9,
1748–1764 (2006).
[154]
Randall, D.A., Conditional instability of the first kind upside-down, J. Atm.
Sci. 37, No. 1, 125 - 130 (1980).
[155]
Stevens, B., et al., Pockets of open cells and drizzle in marine stratocumulus,
Bull.
Amer. Meteor. Soc. 86, No. 1, 51–57 (2005).
[156]
Wood, R., Drizzle in stratiform boundary layer clouds. Part I: Vertical and
horizontal structure, J. Atm. Sci. 62, No. 9, 3011 (2005).
[157]
Clarke, A.D., et al., Particle nucleation in the tropical boundary layer and
its coupling to marine sulfur sources, Science 282, 89–92 (1998).
[158]
Williams, E.R., Lightning and climate: a review, Atm. Res. 76, 272–287 (2005).
[159]
Williams, E.R., et al., Contrasting convective regimes over the Amazon:
implications for cloud electrification, J. Geophys. Res., LBA Special Issue,
107, D20, 8082, doi:10.1029/2001JD000380 (2002).
[160]
Williams, E.R., and S. Stanfill, The physical origin of the land-ocean contrast
in lightning activity, C.R. Physique 3, 1277–1292 (2002).
[161]
Williams, E.R., T. Chan and D. Boccippio, Islands as miniature continents:
another look at the land-ocean lightning contrast, J. Geophys. Res. 109, D16206, doi: 10.1029/2003JD003833 (2004).
[162]
Andreae, M.O., Aerosols before pollution, Science 315, 50–51 (2007).
[163] Van
Loon, H., G.A. Meehl and J.M. Arblaster, A decadel solar effect in the tropics
in July-August, J. Atm. Sol. Terr. Phys. 66, 1767-1778 (2004).
[164]
Chiang, J.C.H., and A.Koutavas, Tropical flip-flop connections, Nature 432,
684–685 (2004).
[165] Ram,
M., M. Stolz and G.Koenig, Eleven year cycle of dust concentration variability
observed in the dust profile of the GSP2 ice core from Central Greenland;
Possible solar cycle connection, Geophys. Res. Lett. 24, No. 19, 2259–2362
(1997).
[166]
Turner, S.M., M.J. Harvey, C.S. Law, P.D. Nightingale and P.S. Liss,
Iron-induced changes in oceanic sulfur biogeochemistry, Geophys. Res. Lett. 31, L14307, doi:10.1029/2004GL020296 (2004).
[167]
Rohrer, F., and H. Berresheim, Strong correlation between levels of
tropospheric hydroxyl radicals and solar ultra violet radiation, Nature 442,
184–187 (2006).
[168] Liu,
Z., and T.D. Herbert, High-latitude influence on the eastern equatorial Pacific
climate in the early Pleistocene epoch, Nature 427, 720–723 (2004).
[169]
CLOUD proposal: A study of the link between cosmic rays and clouds with a cloud
chamber at
the CERN PS, CERN-SPSC-2000-021, SPSC-P317 (2000); CERN-SPSC-2000- 030,
SPSC-P317 Add.1 (2000); CERN-SPSC-2000-041, SPSC-P317 Add.2 (2000);
CERNSPSC-2004-023, SPSC-M721 (2004); CERN-SPSC-2006-004, SPSC-P317 Add.3
(2006). http://cloud.web.cern.ch/cloud/
[170]
Kirkby, J., CLOUD: a particle beam facility to investigate the influence of
cosmic rays on clouds, CERN-EP-2002-019 (2002), and Proc. of the Workshop on
Ion-Aerosol-Cloud Interactions, ed. J. Kirkby, CERN, Geneva, CERN 2001-007,
175–248 (2001).
http://cloud.web.cern.ch/cloud/iaci
workshop/proceedings.html